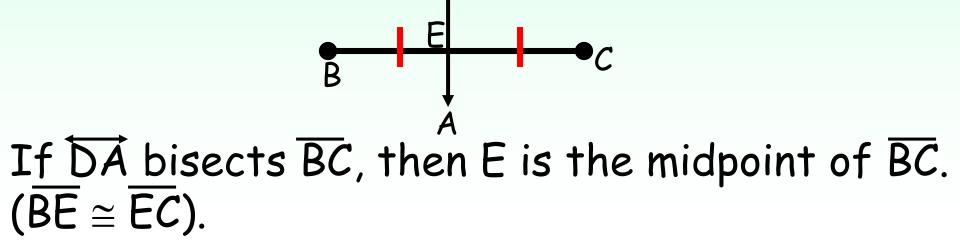
Medians, Altitudes, and Perpendicular Bisectors

Recall the following definitions:

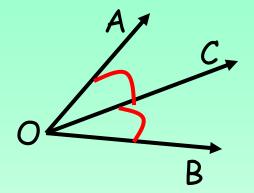
<u>Midpoint</u> - the point on a segment that divides the segment into two congruent segments.

 $\begin{array}{c|c} & & & & \\ B & & A & C \\ \hline \\ If A is the midpoint of BC, then BA \cong AC. \end{array}$

<u>Segment Bisector</u> - a line (or segment, or ray) that intersects a given segment at its midpoint.

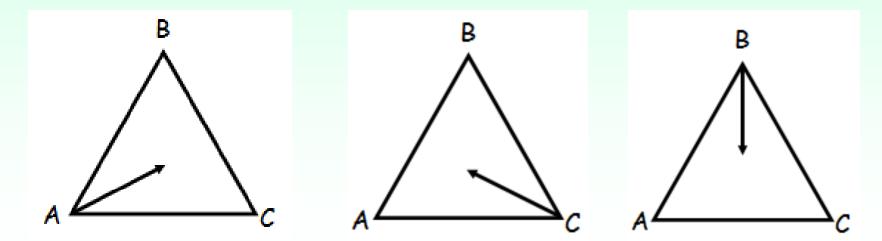


Angle Bisector - a ray that divides the angle into two <u>congruent</u>, adjacent angles.



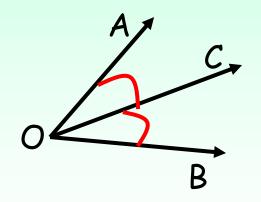
If \overrightarrow{OC} bisects $\angle AOB$, then $\angle COB \cong \angle AOC$.

Every triangle has three \angle bisectors because there are three angles.



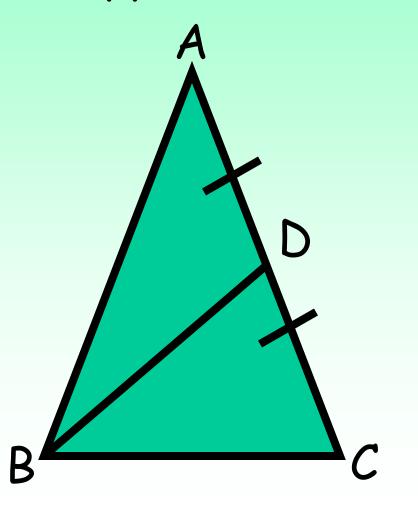
To identify an angle bisector,

look for two congruent angles.

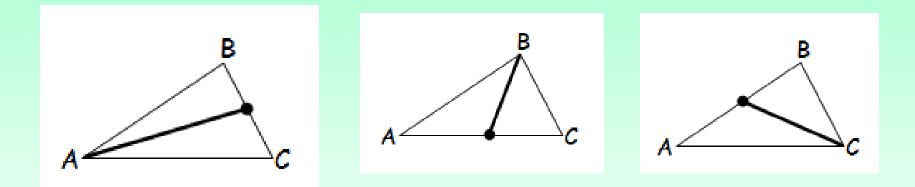


Median: In a triangle, a segment from a <u>vertex</u> of the triangle to the <u>midpoint</u> of the opposite side.

If BD is a median of $\triangle ABC$, then D is the midpoint of \overline{AC} .

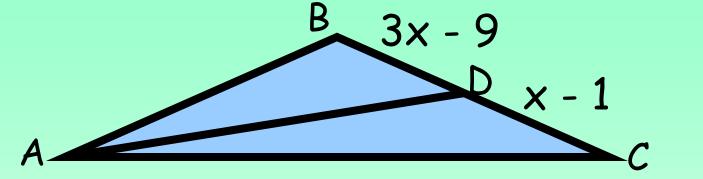


Every triangle has three medians because there are three vertices and three sides.



To identify a median, look for two congruent segments.

Example 1 - Algebra Connection



If \overline{AD} is a median of $\triangle ABC$. Find x, BD, DC, and BC.

Because \overline{AD} is the median, BD = DC.

$$3x - 9 = x - 1$$
 $2x = 8$ $x = 4$

$$BD = 3(4) - 9 = 3$$

DC = 4 - 1 = 3 BC = 3 + 3 = 6

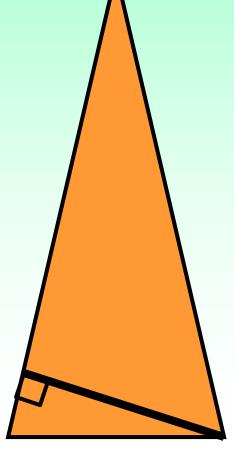
Altitude: In a triangle, a <u>perpendicular</u> segment from a <u>vertex</u> to a line that contains the opposite side.

Altitude

~Every triangle has three altitudes because there are three vertices.

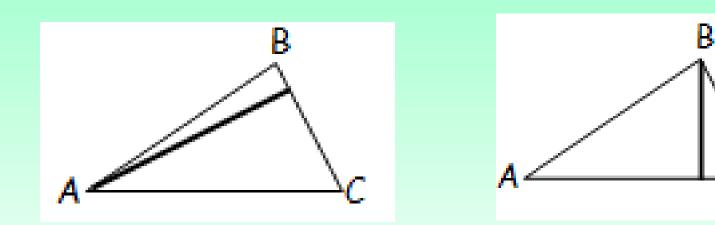
~Altitudes can be found inside or outside the \triangle or can be a side of the \triangle .

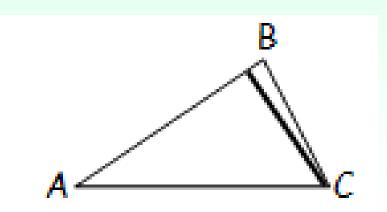
To identify an altitude, look for a Right Angle.



Acute Triangle:

All three altitudes are found <u>inside</u> the triangle.

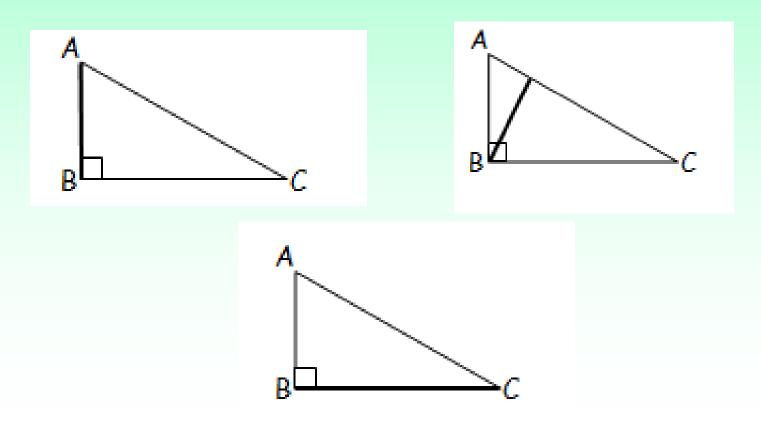




Right Triangle

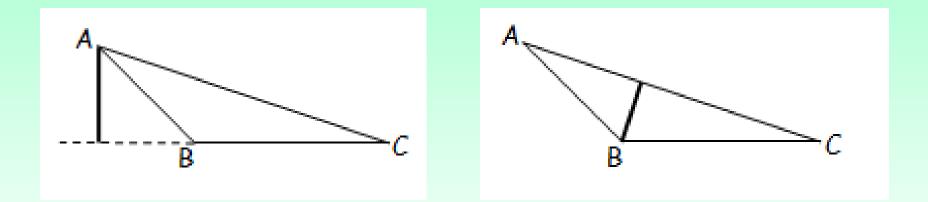
~Two of the altitudes are <u>part</u> of the triangle (the **legs** of the triangle).

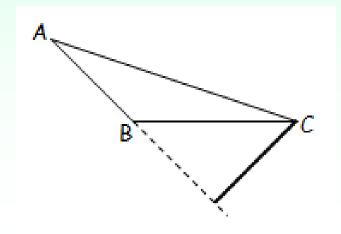
~The third is <u>inside</u> the triangle.



Obtuse Triangle

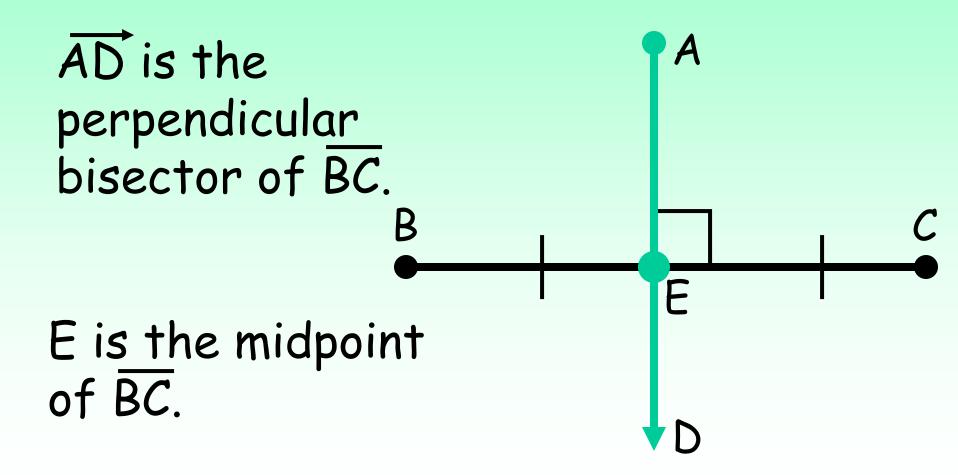
~Two of the altitudes are <u>outside</u> the triangle. ~The third is <u>inside</u> the triangle.





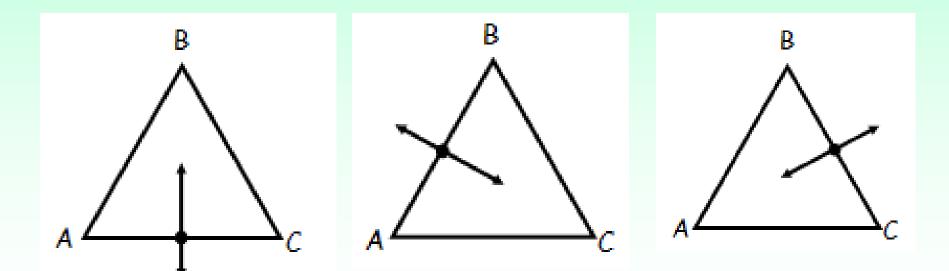
Perpendicular Bisector:

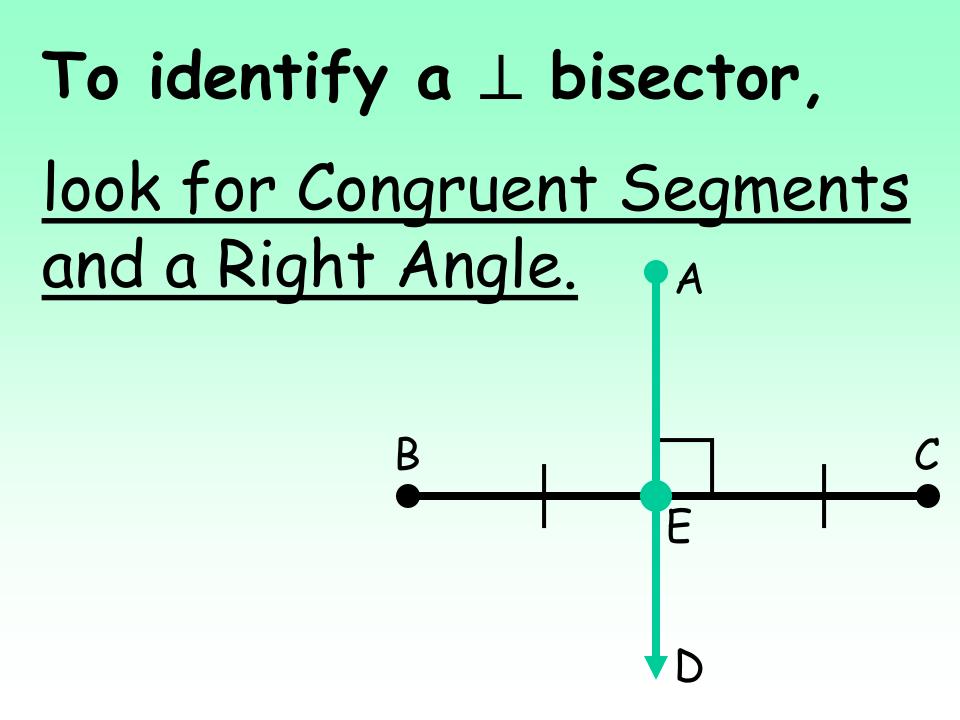
A line (or a ray or a segment) that is **perpendicular** to a segment at its **midpoint**.



~ Cuts the segment into two equal parts (def. of midpoint)

~ Every triangle has three \perp bisectors because there are three sides.



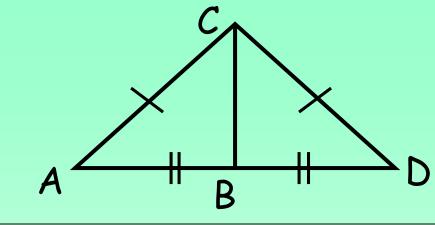


Chart

	Goes Through Vertex	Forms a Right Angle	Goes Through Midpoint	Splits angle in two congruent angles
Angle Bisector				_
Median				
Altitude				
Perpendicular Bisector				

Connections to Proofs...

- Given: \overline{CB} is a median of $\triangle ACD$ $\overline{AC} \simeq \overline{CD}$
- Prove: CB bisects $\angle ACD$
- 1. CB is a median of ΔACD
- 2. B is the midpoint of \overline{AD}
- 3. AB \cong BD
- 4. $\overline{AC} \cong \overline{CD}$
- 5. $\overline{CB} \cong \overline{CB}$
- 6. $\triangle BAC \cong \triangle BDC$
- 7. $\angle ACB \cong \angle DCB$
- 8. \overrightarrow{CB} bisects $\angle ACD$



- 1. Given
- 2. Definition of a median
- 3. Definition of a midpoint
- 4. Given
- 5. Reflexive
- 6. 555
- 7. CPCTC
- 8. Definition of an angle bisector

Connections to Proofs	C/
Given: \overline{CB} is an altitude of $\triangle ACD$	
$\overline{AC}\cong\overline{CD}$	
Prove: B is the midpoint of \overline{AD}	A B D
1. \overline{CB} is an altitude of $\triangle ACD$	1. Given
2. $\overline{CB} \perp \overline{AD}$	2. Definition of an altitude
3. $\angle ABC$, $\angle DBC$ are right $\angle s$	3. Definition of Perpendicular Lines
4. $\overline{AC} \cong \overline{CD}$	4. Given
5. $\overline{CB} \cong \overline{CB}$	5. Reflexive
6. $\triangle BAC \cong \triangle BDC$	6. HL
7. $\overline{AB} \cong \overline{BD}$	7. CPCTC
8. B is the midpoint of \overline{AD}	8. Definition of a midpoint